Dissolution reconstruction of electron-transfer enhanced hierarchical NiS_x -MoO₂ nanosponges as a promising industrialized hydrogen evolution catalyst beyond Pt/C

Benzhi Wang^a, Hexiu Huang^a, Tingting Sun^a, Puxuan Yan^a, Tayirjan Taylor Isimjan^{b,*}, Jianniao Tian^a, Xiulin Yang^{a,}

technology, electrocatalytic water splitting stands out among the in various hydrogen production technologies since it produces high-purity hydrogen with unlimited water resources. Moreover, it can easily be bundled with other renewable energy sources, such as solar wind energy [3]. There are two types of industrial electrolyzers depending on the water pH. However, the alkaline electrolyzer is widely used because of less corrosion and lower capital cost. On the other hand, the acidic electrolyzer generates higher current density [4]. Nevertheless, the price of H₂ generated from water electrolysis is still much higher than that of steam reforming. Therefore, producing scalable, low-cost, durable, and efficient electrode is an important step to reduce the capital cost of electrolyzer subsequently generate cheaper H₂. The hydrogen evolution reaction (HER) that occurred in the cathode is hindered by low conductivity and a lack of active sites. Currently, Pt-based noble metal allovs are by far the most effective catalysts for HER [5]. However: their low reserves and high cost limit their widespread application. Therefore, developing efficient and earthabundant HER catalysts are highly desirable. At present, the earth-abundant transition metal alloys [6] and their oxides [7,8], nitrides [9,10], sulfides [11], phosphides [12], and selenides [13] have been extensively studied as cathodes catalysts for HER. But, the weak intrinsic activities and poor electrical conductivities limit their HER performances [14]. Furthermore, to satisfy the strict industrial standard, the HER catalyst should be operated at a high current density [15] (>400 mA cm⁻²) with relatively low overpotential for an extended period. Based on the above considerations, a simple process of fabricating a rationally engineered HER catalyst with excellent conductivity, high active site density as well as the durability at high current density is a critical step to compete with the ongoing industrial process. It is almost impossible to find a single material that can satisfy all those requirements; therefore, designing a hybrid material is necessary.

In recent years, there is an extensive investigation on MoO₂ with a distorted rutile structure due to its metal-like conductivity $(1.14 \times 10^4 \text{ S at 300 K for bulk materials})$ and high chemical stability [16]. However, most studies have focused on improving HER performance by building specific nanostructures, which have not worked much on MoO₂-based composites [17,18]. In spite of these advantages, the nanostructured MoO₂ materials are limited by a lack of active sites for HER [19]. On the other hand, Ni-based electrocatalysts have high corrosion resistance in alkaline solution and abundant active sites [20,21]. But, the nickel-based electrocatalysts are mostly in powder form and need to be coated on a conductive substrate for HER application [22,23]. The catalyst coating on the substrate causes a decrease in the catalytic performance of the powder catalyst because of the mechanical shedding. Moreover, the catalyst conductivity may decrease due to the use of polymer binders during the preparation. Furthermore, the catalytic performance of the materials is closely related to their morphology and composition. The sponge-like porous structure provides high surface area, sufficient active site and better mass transfer. Moreover, it also prevents catalyst aggregation [24,25]. To the best of our knowledge, there is no report on the HER application of NiS_x-MoO₂ nanosponges.

Herein, we develop a highly-active NiS_x-MoO_2 nanosponge decorated carbon cloth as HER catalyst (NiS_x-MoO_2/CC). It is the first report of a simple yet industrial compatible strategy based on NiS_x-MoO_2/CC . The synthesis process includes a two-step electrodeposition followed by vulcanization processing (Scheme 1). In this design, we not only combined the unique features of both components such as high conductivity of MoO_2 and high HER activity of NiS_x but also eliminated the coating process by growing NiS_x directly on the surface of MoO_2 . The optimized NiS_x-MoO_2/CC catalyst only requires overpotentials of 60 and 149 mV (vs. RHE) to reach 10 and 100 mA cm⁻² in 1.0 M KOH, respectively. Moreover,

it outperforms the Pt/C catalyst when the overpotential is higher than 114 mV. Most importantly, the optimized NiS_x-MoO₂/CC requires much smaller overpotentials to reach large current densities (500 mA cm⁻²@208 mV and 1000 mA cm⁻²@230 mV) than the industrial HER catalyst-Raney Ni (500 mA cm⁻²@300–500 mV) in 30% KOH solution [26-28], suggesting a strong industrial perspective.

2. Experimental

2.1. Materials

Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, \geq 98%), ammonium molybdate tetrahydrate (H₂₄Mo₇N₆O₂₄·4H₂O), sulfur sublimed (S, 99%). All the reagents were analytical reagent and used without further purification. Commercial Pt/C (20 wt% for platinum) was purchased from Alfa Aesar.

2.2. Electrodeposition of Ni-, Mo- and Ni-Mo-species on carbon cloth

Initially, the carbon cloth (CC, 1 cm \times 1.5 cm) was ultrasonically cleaned in sulfuric acid, deionized water, and ethanol for 5 min, respectively, and cycled 3 times to remove impurities. Electrodeposition was performed in a standard three-electrode system, in which the treated CC, graphite plate, and saturated calomel electrode (SCE) were used as working, counter, and reference electrodes, respectively. The Ni-species/CC samples were fabricated by continuous electrodeposition for 1.0 h at -10 mA cm⁻² in 0.1 M Ni(NO₃)₂ solution. These obtained samples were rinsed with a large amount of water and naturally dried for use. Subsequently, the samples of Ni-species/CC were used as working electrodes at -10 mA cm⁻² for electrodeposition different times from 0.5 to 2.0 h in 0.1 M $H_{24}Mo_7N_6O_{24}$ solution. The resulted samples are nominated as Ni-Mo-species/CC-0.5 h, Ni-Mo-species/CC-1 h and Ni-Mo-species/CC-2 h, respectively. As a control, electrodeposition of Mo-species on fresh CC surface (Mo-species/CC) was also prepared at -10 mA cm^{-2} for 1.0 h in 0.1 M H₂₄Mo₇N₆O₂₄ solution.

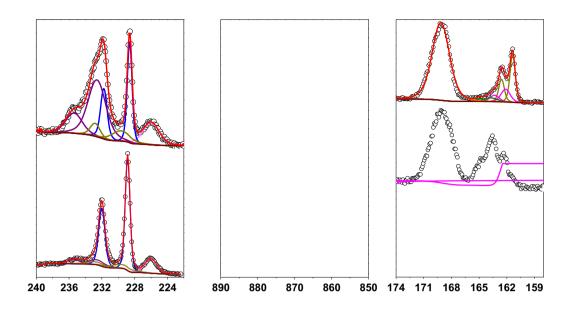
2.3. Synthesis of NiS₂/CC, MoO₂/CC and NiS_x-MoO₂/CC

The catalyst of NiS_x-MoO₂/CC was prepared by coating 0.5 g of sulfur powder on a series of Ni-Mo-species/CC surfaces, and slowly heating (3 °C min⁻¹) to a specific temperature (400, 500 or 600 °C) for 4.0 h in Ar atmosphere (20 sccm), and then cooling down to room temperature. After sufficient water washing and drying, the prepared materials were nominated as NiS_x-MoO₂/CC (from XRD data). As a comparison, the NiS₂/CC and MoO₂/CC were also prepared by a similar method as mentioned above.

2.4. Characterization

Scanning electron microscopy (SEM, Quanta FEG 200, Holland) and transmission electron microscopy (TEM, JEOL, JEM-2100F) were used to investigate the morphologies and microstructures of the designed materials. X-ray powder diffraction (XRD) data was detected by a D/Max 2500 V PC with Cu Kαradiation from Rigaku. The chemical states of the samples were examined by Xray photoelectron spectroscopy (XPS, model: JPS-9010 TR Photoelectron Spectrometer, Japan). Raman spectroscopy was acquired from an inVia confocal Raman microscope (Renishaw, England).

2.5. Electrochemical measurements


The electrochemical performance of the as-prepared catalysts were studied by an electrochemical workstation of Biologic VMP3 with a typical three-electrode system in 1.0 M KOH electrolyte. The catalysts modified carbon cloth, graphite plate and SCE were used as working, counter and reference electrodes, respectively. Cyclic voltammetry (CV) tests were firstly carried out for about 5 cycles to stabilize the electrocatalytic performance of the catalyst at a scan rate of 20 mV s⁻¹. Then, liner sweep voltammetry (LSV) curves were performed at a low scan rate of 0.5 mV s⁻¹, and electrochemical impedance spectroscopy (EIS) was evaluated near the onset potential in the frequency range from 200 kHz to 10 mHz. All potentials (vs. SCE) in this work were cal-

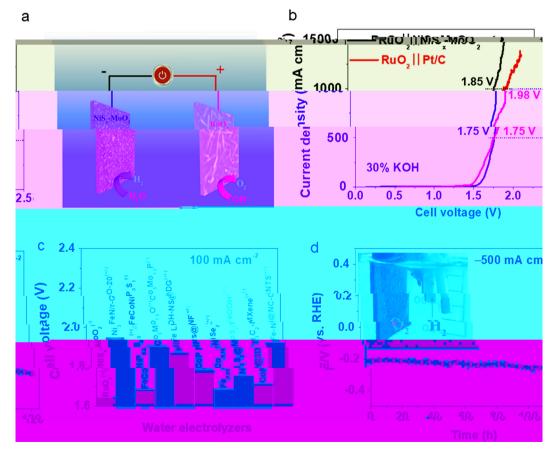
Ni-species arrays grow vertically on CC surface and created large holes between the nanosheets (Fig. 2a). After electrodeposited Mo-species, a certain level of porosity is visible on the Ni-Mo composite (Fig. 2b). After vulcanization at 500 °C in Ar atmosphere, some particulate materials appear on the surface of $NiS_x-MoO_2/$ CC (Fig. 2c). Interestingly, the cross-sectional SEM image shows a uniformly nanosponge-like NiS_x-MoO₂ structure (inset of Figs. 2c and S3a). These porous structures not only facilitate mass transfer but also expose more active sites, thereof improve the electrochemical performance. The TEM image shows some flaky and granular structures, which is consistent with the SEM results (Figs. 2d and S3b). High-resolution TEM image shows clear lattice stripes with a lattice spacing of 0.242, 0.283 and 0.198 nm corresponding to the $(1\ 1\ 1)$ crystal plane of MoO₂, $(2\ 0\ 0)$ plane of NiS₂ and $(1\ 0\ 2)$ plane of NiS, respectively (Fig. 2e) [35-37]. Moreover, we have observed the layer stacking characteristics of two-dimensional materials, which belong to the typical MoS_2 species [38]. The high-angle annular dark field (HAADF) TEM elemental mappings reveal that Ni, Mo, S, and O are uniformly distributed in NiS_x-MoO_2/CC (Fig. 2f-g). As comparison, we also present the SEM images of NiS_x-MoO₂/CC catalysts with different deposition times of Mo species (Figs. S3c-f). In addition, the inductively coupled plasma mass spectrometry (ICP-MS) test results showed that the mass fractions of Ni and Mo in the NiS_x-MoO₂/CC composite were 28.1 and 15.1 wt%, respectively. The atomic ratio of Ni /Mo was 3.03/1 (Table S1).

The surface composition and chemical states of NiS_x-MoO₂/CC are further clarified through X-ray photoelectron spectroscopy (XPS). The typical XPS survey spectra in Fig. S4a confirms the existence of Mo, Ni, O, S, and C elements in NiS_x-MoO₂/CC, where the high-resolution C 1s spectrum is convoluted into four peaks at C=C (284.0 eV), C–C (284.8 eV), C–O (286.0 eV) and C=O (288.0 eV) as shown in Fig. S4b [39,40]. The high-resolution Mo 3d spectrum of NiS_x-MoO₂/CC and MoO₂/CC is displayed in Fig. 3a. The XPS peak of NiS_x-MoO₂/CC at 228.6 eV is assigned to Mo 3d_{5/2}. The corresponding Mo 3d_{5/2} peak of NiS_x-MoO₂/CC

shows a negative shift by 0.25 eV as compare to that of MoO₂/CC (228.85 eV) [41–43]. Besides, the high-resolution Ni 2p_{3/2} region of NiS_x-MoO₂/CC presents two peaks at 853.4 eV and 857.2 eV, accompanied by a strong satellite at 861.8 eV, which represent the two different chemical states of Ni in NiS_x-MoO₂/CC [44,45]. In addition to the same Ni²⁺ and satellite peak positions, the Ni⁴⁺ species of NiS_x/CC material has a binding energy of 856.3 eV, which results a positive shift of 0.91 eV as compared to that of NiS_x -MoO₂/CC (Fig. 3b). The peaks at 161.4 eV, 162.1 eV and 163.7 eV of S 2p_{3/2} are corresponding to S2p of MoS₂, NiS and NiS₂ species, respectively (Fig. 3c) [46]. Moreover, there is a strong peak at 169.1 eV, which can be assigned to S-O species arising from surface oxidation. It should be noted that the slight negative shift on Mo $3d_{5/2}$ (Mo⁴⁺) and the significant positive shift on Ni $2p_{3/2}$ (Ni⁴⁺) peaks in NiS_x-MoO₂/CC as compare to those of MoO_2/CC and NiS_x/CC . This result indicates that the MoO_2 species have a higher electron density than these of NiS_v species in the composite [47], and the improved electron density can synergistically promote the HER catalytic activity [48].

The HER electrocatalytic activity of NiS_x-MoO₂/CC was firstly optimized by the effect of vulcanization temperatures and electroplating times of Mo-species on the catalytic performance. The results show that the catalyst obtained at vulcanization temperature of 500 °C has the best HER catalytic activity and minimum Tafel slope in 1.0 M KOH solution (Fig. S5). The electrocatalytic activities of the optimized NiS_x-MoO₂/CC catalyst together with MoO₂/CC, NiS_x/CC, NiMo-species/CC and commercial Pt/C (Johnson

 NiS_x -MoO₂/CC is significantly better than that of commercial Pt/C catalyst indicating a great potential for industrial applications because it only requires overpotentials of 208 and 230 mV to reach 500 and 1000 mA cm⁻² in 30 wt% KOH solution (Fig. S6). The Tafel slope is usually employed to evaluate the reaction kinetics and the rate-determining step during HER process. According to the kinetic


modeling results, the Tafel slope values of Volmer, Heyrovsky and Tafel reactions correspond to 120, 40 and 30 mV dec⁻¹, respectively [49]. It is well understood that the hydrogen evolution reaction under alkaline conditions involves two steps [50]. The step 1 is the water dissociation and the intermediates formation (Volmer reaction): $H_2O + M + e^- \rightarrow M-H_{ad} + OH^-$, followed by either the

desorption step (Heyrovsky reaction): $H_2O + M-H_{ad} + e^- \rightarrow M + H_2 + OH^-$, or a recombination step (Tafel reaction): $2M-H_{ad} \rightarrow 2M + H_2$ [51]. As show in Fig. 4b, the Tafel slope of NiS_x-MoO₂/CC is 89 mV dec⁻¹, which is obviously less than that of all control catalysts, indicating a fast Volmer-Heyrovsky mechanism [52]. Moreover, the exchange current density (j₀), the key parameter reflecting the intrinsic activity of HER, was calculated by extrapolation the Tafel slope. As shown in Fig. 4c, the NiS_x-MoO₂/CC exhibited the highest value of 2.056 mA cm⁻² compared to those of Ni-Mospecies/CC (0.042 mA cm⁻²), MoO₂/CC (0.433 mA cm⁻²), NiS₂/CC (0.297 mA cm⁻²) and Pt/C (1.462 mA cm⁻²). Meanwhile, the NiS_x-MoO₂/CC also shows the lowest charge transfer resistance (Fig. S7), suggesting the fastest HER kinetics [53].

In general, a better electrocatalytic activity is accompanied by a larger electrochemically active surface area (EASA), and the EASA is normally proportional to the electrochemical double-layer capacitance (C_{dl}) . The C_{dl} was calculated by measuring the CV curves in a non-faradaic potential window (Fig. S8). As shown in Fig. 4d, the C_{dl} value of NiS_x-MoO₂/CC is 602 mF cm⁻², which is much higher than those of NiS₂/CC (233 mF cm⁻²), MoO₂/CC (216 mF cm⁻²) and Ni-Mo-species/CC (2 mF cm⁻²). The results reveals that the NiS_x-MoO₂ nanosponges with dual active sites generate more accessible active sites in alkaline electrolyte than those of other catalysts, thereby promoting H₂ evolution. At the same time, the turnover frequency (TOF) was adopted to measure the amount of H₂ molecules released per second per active site, which was normally used to evaluate the intrinsic catalytic activity of the catalyst [54]. As show in Fig. S9a, the TOF value increases rapidly as the applied voltage increases in 30 wt% KOH solution. In particular, when the overpotentials are at 150 and 200 mV, the corresponding TOF values are *ca.* 2.8 and 13.7 s⁻¹ (Fig. S9b), which are much larger than most reported in the literature [6,55]. It was confirmed that NiS_x -MoO₂/CC has excellent intrinsic catalytic activity.

To satisfy industrial compliance, the optimized HER catalysts coupled with RuO₂ as a counter electrode was tested at high current density in a two-electrode system (Fig. 5a). The steady-state potential polarization curve of the coupled $RuO_2^{(+)}//NiS_x-MoO_2^{(-)}$ is show in Fig. 5b. Interestingly, the overall voltage required for total water splitting of the $RuO_2^{(+)}//NiSx-MoO_2^{(-)}$ is slightly higher than that of benchmark system of $RuO_2^{(+)}//Pt/C^{(-)}$ at a low current density and reaches the same value at 1.74 V (~500 mA cm⁻²). However, it starts to over the catalytic performance of both $RuO_2^{(+)}//$ $Pt/C^{(-)}$ and the existing industrial system (200–400 mA cm⁻² at 1.8–2.4 V) at high current density (>500 mA cm⁻²). Besides, it only needs 0.1 V extra voltage for reaching the current density from 500 to 1000 mA cm⁻². Furthermore, we gathered some of the high performance the HER catalysts reported in the literatures (Table S3) and compared their results with our optimized catalyst (Fig. 5c). The optimized NiS_x-MoO₂/CC shows the lowest cell voltage for achieving 100 mA cm⁻² as compared to the rest. Finally, we performed a durability test. As shown in Fig. 5d, the NiS_x-MoO₂/CC catalyst was continuously operated for 120 h in the industrial condition (30 wt% KOH) at a constant current of 500 mA cm⁻² and almost no degradation was observed indicating a great industrial perspective.

As discussed above, the excellent HER electrocatalytic activity is due to the unique structure of the composite catalyst and the synergistic effect between the two active species. The XPS spectra prove that there is a strong electron transfer effect between MoO₂ and NiSx species, which makes MoO₂ have a partial negative

Fig. 5. (a) Schematic diagram of overall-water-splitting electrolytic cell using NiS_x-MoO₂ and RuO₂ as cathode and anode, respectively. (b) Comparison of overall-water-splitting activity of $RuO_2^{(+)}/NiS_x$ -MoO₂⁽⁻⁾ with noble metal $RuO_2^{(+)}/Pt/C^{(-)}$ at high current in 30 wt% KOH. (c) Comparing the cell voltage of the currently available electrolytic cell at 100 mA cm⁻² in 1.0 M KOH. (d) Durability tests of NiS_x-MoO₂ at -500 mA cm⁻² in 30 wt% KOH.

charge, and NiSx takes a somewhat positive charge. In an alkaline environment, the positively charged NiSx species can adsorb H₂O molecules at the interface of the two active sites and synergistically promote the dissociation of H₂O, thereby forming a reactive intermediate of adsorbed hydrogen (M-H_{ad}) on the surface of the MoO₂ species. The formed M-H_{ad} can further bind with one electron and one H₂O molecule, synchronously releasing H₂ through the Heyrovsky step (M - H_{ad} + e^- + H₂O \rightarrow M + H₂ + OH⁻) (Scheme 2) [51].

4. Conclusion

In summary, we have developed an excellent NiSx-MoO2/CC electrocatalyst using two-step electrodeposition and subsequent vulcanization. The resulted NiSx-MoO2/CC catalyst exhibits superior catalytic activity with a low overpotential of 60 mV at -10 mA cm⁻², a small Tafel slope of 89 mV dec⁻¹, a significant exchange current density of 2.065 mA cm⁻², and long-term stability in 30 wt% KOH. The excellent results are attributed to the hierarchical porous structures as well as a synergistically catalytic effect for HER between NiSx and MoO2 species. Therefore, the reported method of HER catalyst with unique architecture and enhanced electron transfer effect is also useful for future construction of other high-efficiency materials, such as fuel cells, photocatalysis, lithium-ion batteries, and so on.

CRediT authorship contribution statement

Benzhi Wang: Investigation, Methodology. **Hexiu Huang:** Data curation. **Tingting Sun:** Formal analysis. **Puxuan Yan:** Data curation. **Tayirjan Taylor Isimjan:** Writing - original draft. **Jianniao Tian:** Supervision. **Xiulin Yang:** Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (no. 21965005), Natural Science Foundation of Guangxi Province (2018GXNSFAA294077, 2018GXNSFAA281220), Project of High-Level Talents of Guangxi (F-KA18015, 2018ZD004) and Innovation Project of Guangxi Graduate Education (XYCSZ2019056, YCBZ2019031).

Notes

The authors declare no competing financial interest.

Appendix A. Supplementary data

Figs. S1–S9 and Tables S1–S3 give more details on characterization of our synthesized materials and their electrocatalytic performance data; additional XPS and electrocatalytic performance data (PDF). Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcis.2020.02.027.

References

- [1] R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Ternary NiCo_{2 PX} nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction, Adv. Mater. 29 (2017) 1605502.
- [2] S. Li, C. Cheng, A. Sagaltchik, P. Pachfule, C. Zhao, A. Thomas, Metal-organic precursor-derived mesoporous carbon spheres with homogeneously distributed molybdenum carbide/nitride nanoparticles for efficient hydrogen evolution in alkaline media, Adv. Funct. Mater. 29 (3) (2019) 1807419.
- [3] J. Hao, W. Yang, Z. Peng, C. Zhang, Z. Huang, W. Shi, A nitrogen doping method for CoS₂ electrocatalysts with enhanced water oxidation performance, ACS Catal. 7 (2017) 4214–4220.
- [4] K. Pandi, M. Sivakumar, S.-M. Chen, Y.-H. Cheng, T.-W. Chen, A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology, Int. J. Electrochem. Sci. 13 (2018) 1173–1226.
- [5] X. Cheng, Y. Li, L. Zheng, Y. Yan, Y. Zhang, G. Chen, S. Sun, J. Zhang, Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction, Energy Environ. Sci. 10 (2017) 2450–2458.
- [6] L. Yang, L. Zeng, H. Liu, Y. Deng, Z. Zhou, J. Yu, H. Liu, W. Zhou, Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction, Appl. Catal., B 249 (2019) 98–105.
- [7] R. Sun, Z. Xia, L. Shang, X. Fu, H. Li, S. Wang, G. Sun, Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrode, J. Mater. Chem. A 5 (2017) 15260–15265.
- [8] Y. Liu, X. Li, W. Bi, M. Jin, An etching-assisted route for fast and large-scale fabrication of non-layered palladium nanosheets, Nanoscale 10 (2018) 7505– 7510.
- [9] G.-X. Tong, F.-T. Liu, W.-H. Wu, J.-P. Shen, X. Hu, Y. Liang, Polymorphous α- and β-Ni(OH)₂ complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors, CrystEngComm 14 (2012) 5963–5973.
- [10] N. Meng, J. Ren, Y. Liu, Y. Huang, T. Petit, B. Zhang, Engineering oxygencontaining and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production, Energy Environ. Sci. 11 (2018) 566–571.
- [11] P. Kuang, T. Tong, K. Fan, J. Yu, In Situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range, ACS Catal. 7 (2017) 6179–6187.
- [12] C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A.M. Asiri, X. Sun, Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation, Adv. Mater. 29 (2017) 1602441.
- [13] Y. Guo, Z. Yao, C. Shang, E. Wang, P doped Co₂Mo₃Se nanosheets grown on carbon fiber cloth as an efficient hybrid catalyst for hydrogen evolution, J. Mater. Chem. A 5 (2017) 12043–12047.
- [14] B. Ren, D. Li, Q. Jin, H. Cui, C. Wang, Integrated 3D self-supposed Ni decorated MoO2 nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution, J. Mater. Chem. A 5 (2017) 24453– 24461.
- [15] P. Millet, S. Grigoriev, Chapter 2 Water electrolysis technologies, in: L.M. Gandía, G. Arzamendi, P.M. Diéguez (Eds.), Renewable Hydrogen Technologies, Elsevier, Amsterdam, 2013, pp. 19–41.
- [16] L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, S. Chen, Porous metallic MoO₂-supported MoS₂ nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction, Nanoscale 7 (2015) 5203–5208.
- [17] Y.J. Tang, M.R. Gao, C.H. Liu, S.L. Li, H.L. Jiang, Y.Q. Lan, M. Han, S.H. Yu, Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution, Angew. Chem. Int. Ed. 54 (2015) 12928–12932.
- [18] B. Zhang, Y. Xue, A. Jiang, Z. Xue, Z. Li, J. Hao, Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO₂ for efficient hydrogen evolution, ACS Appl. Mater. Interfaces 9 (2017) 7217–7223.
- [19] M. Tian, F. Li, H. Hu, J. Ma, J. Jin, Nano-Cu-mediated multi-sites approach for growing ultrafine MoO₂ nanoparticles on PDDA-rGO as a robust hydrogen evolution electrocatalyst, ChemSusChem 12 (2018) 441–448.

- [20] Z. Chen, G. Cao, L. Gan, H. Dai, N. Xu, M. Zang, H. Dai, H. Wu, P. Wang, Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction, ACS Catal. 8 (2018) 8866–8872.
- [21] J. Sun, Z. Wen, L. Han, Z. Chen, X. Lang, Q. Jiang, Nonprecious intermetallic Al₇Cu₄Ni nanocrystals seamlessly integrated in freestanding bimodal nanoporous copper for efficient hydrogen evolution catalysis, Adv. Funct. Mater. 28 (2018) 1706127.
- [22] X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting, Adv. Funct. Mater. 26 (2016) 4067–4077.
- [23] Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang, X. Sun, Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction, Small 13 (2017) 1701648.
- [24] Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu, X. Li, L. Wang, H. Wang, Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia, Chem. Commun. 55 (2019) 14745–14748.
- [25] X. Peng, D. Chen, X. Yang, D. Wang, M. Li, C.-C. Tseng, R. Panneerselvam, X. Wang, W. Hu, J. Tian, Y. Zhao, Microwave-assisted synthesis of highly dispersed PtCu nanoparticles on three-dimensional nitrogen-doped graphene networks with remarkably enhanced methanol electrooxidation, ACS Appl. Mater. Interfaces 8 (2016) 33673–33680.
- [26] D. Delgado, M. Minakshi, D.J. Kim, C. Kyeong W, Influence of the oxide content in the catalytic power of raney nickel in hydrogen generation, Anal. Lett. 50 (2017) 2386-2401.
- [27] I. Herraiz-Cardona, C. González-Buch, C. Valero-Vidal, E. Ortega, V. Pérez-Herranz, Co-modification of Ni-based type Raney electrodeposits for hydrogen evolution reaction in alkaline media, J. Power Sources 240 (2013) 698–704.
- [28] Y. Luo, L. Tang, U. Khan, Q. Yu, H.-M. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density, Nat. Commun. 10 (2019) 269.
- [29] L.J. Yang, Y.Q. Deng, X.F. Zhang, H. Liu, W.J. Zhou, MoSe₂ nanosheet/MoO₂ nanobelt/carbon nanotube membrane as flexible and multifunctional electrodes for full water splitting in acidic electrolyte, Nanoscale 10 (2018) 9268–9275.
- [30] S.-L. Yang, H.-B. Yao, M.-R. Gao, S.-H. Yu, Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties, CrystEngComm 11 (2009) 1383–1390.
- [31] P. Kumar, M. Singh, G.B. Reddy, Oxidation of core-shell MoO₂-MoS₂nanoflakes in different O₂ambience, Mater. Res. Express 4 (2017) 036405.
- [32] J.H. Ku, Y.S. Jung, K.T. Lee, C.H. Kim, S.M. Oh, Thermoelectrochemically activated MoO₂ powder electrode for lithium secondary batteries, J. Electrochem. Soc. 156 (2009) A688–A693.
- [33] G. Shaohui, L. Xuanhua, R. Xingang, Y. Lin, Z. Jinmeng, W. Bingqing, Optical and electrical enhancement of hydrogen evolution by MoS₂@MoO₃ core-shell nanowires with designed tunable plasmon resonance, Adv. Funct. Mater. 28 (2018) 1802567.
- [34] R.D. Nikam, A.Y. Lu, P.A. Sonawane, U.R. Kumar, K. Yadav, L.J. Li, Y.T. Chen, Three-dimensional heterostructures of MoS₂ nanosheets on conducting MoO₂ as an efficient electrocatalyst to enhance hydrogen evolution reaction, ACS Appl. Mater. Interfaces 7 (2015) 23328–23335.
- [35] H. Li, C. Mao, H. Shang, Z. Yang, Z. Ai, L. Zhang, New opportunities opened by nanosheets photocatalysts for efficient N2 fixation, Nanoscale 10 (2018) 15429–15435.
- [36] L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi, S. Guo, Atomic-level coupled interfaces and lattice distortion on CuS/NiS₂ nanocrystals boost oxygen catalysis for flexible Zn-air batteries, Adv. Funct. Mater. 27 (2017) 1703779.
- [37] H. Zhao, H. Zhang, G. Cui, Y. Dong, G. Wang, P. Jiang, X. Wu, N. Zhao, A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: from the case of NiS/g-C₃N₄, Appl. Catal., B 225 (2018) 284–290.
- [38] C. Dahl-Petersen, M. Saric, M. Brorson, P.G. Moses, J. Rossmeisl, J.V. Lauritsen, S. Helveg, Topotactic growth of edge-terminated MoS₂ from MoO₂ nanocrystals, ACS Nano 12 (2018) 5351–5358.

- [39] M. Qian, M. Xu, S. Zhou, J. Tian, T. Taylor Isimjan, Z. Shi, X. Yang, Template synthesis of two-dimensional ternary nickel-cobalt-nitrogen co-doped porous carbon film: promoting the conductivity and more active sites for oxygen reduction, J. Colloid Interface Sci. 564 (2019) 276–285.
- [40] J. Guo, B. Wang, D. Yang, Z. Wan, P. Yan, J. Tian, T.T. Isimjan, X. Yang, Rugae-like Ni₂P-CoP nanoarrays as a bi-functional catalyst for hydrogen generation: NaBH₄ hydrolysis and water reduction, Appl. Catal. B: Environ. 265 (2019) 118584.
- [41] E. Yavuz, K.V. Özdokur, İ. Çakar, S. Koçak, F.N. Ertaş, Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium, Electrochim. Acta 151 (2015) 72–80.
- [42] K.V. Özdokur, A.Y. Tatlı, B. Yılmaz, S. Koçak, F.N. Ertaş, Development of pulsed deposited manganese and molybdenum oxide surfaces decorated with platinum nanoparticles and their catalytic application for formaldehyde oxidation, Int. J. Hydrogen Energy 41 (2016) 5927–5933.
- [43] S. Koçak, F.N. Ertaş, Z. Dursun, Electrochemical deposition and behavior of mixed-valent molybdenum oxide film at glassy carbon and ITO electrodes, Appl. Surf. Sci. 265 (2013) 205–213.
- [44] L. Zhang, I.S. Amiinu, X. Ren, Z. Liu, G. Du, A.M. Asiri, B. Zheng, X. Sun, Surface modification of a NiS₂ nanoarray with Ni(OH)₂ toward superior water reduction electrocatalysis in alkaline media, Inorg. Chem. 56 (2017) 13651– 13654.
- [45] S. Meng, Y. Cui, H. Wang, X. Zheng, X. Fu, S. Chen, Noble metal-free 0D–1D NiS_x/CdS nanocomposites toward highly efficient photocatalytic contamination removal and hydrogen evolution under visible light, Dalton Trans. 47 (2018) 12671–12683.
- [46] A.Y. Lu, X. Yang, C.C. Tseng, S. Min, S.H. Lin, C.L. Hsu, H. Li, H. Idriss, J.L. Kuo, K. W. Huang, L.J. Li, High-sulfur-vacancy amorphous molybdenum sulfide as a high current electrocatalyst in hydrogen evolution, Small 12 (2016) 5530–5537.
- [47] Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, H.-Y. Chen, Energy level engineering of MoS₂ by transition-metal doping for accelerating hydrogen evolution reaction, J. Am. Chem. Soc. 139 (2017) 15479–15485.
- [48] S.-Q. Liu, H.-R. Wen, G. Ying, Y.-W. Zhu, X.-Z. Fu, R. Sun, C.-P. Wong, Amorphous Ni(OH)₂ encounter with crystalline CuS in hollow spheres: a mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis, Nano Energy 44 (2018) 7–14.
- [49] Y. Li, X. Tan, S. Chen, X. Bo, H. Ren, S. Smith, C. Zhao, Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution, Angew. Chem. Int. Ed. 58 (2019) 461–466.
- [50] B. You, X. Liu, G. Hu, S. Gul, J. Yano, D.E. Jiang, Y. Sun, Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water, J. Am. Chem. Soc. 139 (2017) 12283–12290.
- [51] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces, Science 334 (2011) 1256–1260.
- [52] H. Wang, Y. Wang, L. Tan, L. Fang, X. Yang, Z. Huang, J. Li, H. Zhang, Y. Wang, Component-controllable cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon frameworks for efficient hydrogen evolution in alkaline conditions, Appl. Catal., B 244 (2019) 568–575.
- [53] Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, M. Jaroniec, S.Z. Qiao, High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst, J. Am. Chem. Soc. 138 (2016) 16174–16181.
- [54] Y.[48]caps.376317455.753.7(C)-293.9(Univer2ays)-]caps.376C.L. Xcaps.3758(B)]TJT4(Chena