PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (XXXX) XXX

Rational design of highly selective nitrogen-doped Fe₂O₃-CNTs catalyst towards H₂O₂ generation in alkaline media

Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology

(KAUST), Thuwal, 23955-6900, Saudi Arabia

HIGHLIGHTS

- 1 1 . 1 · · · · · · · · · · · · ·
- . <u>, 1</u>., 1. · · . - 1 115, 4.1.1 - . . .
- than the the table of table o 1 -A, F - ,
-

ARTICLE INFO

Article history:

. , + . . **.** . + · · · / . , <u>+</u>1/, ,

Keywords:

- , + - , × - , +

* Corresponding author

** Corresponding author

GRAPHICAL ABSTRACT

ABSTRACT

4, 1 11 1 1 1 1 1.1 - - · · + - · - + - + -1 1 1 1 S. F. I. I. F. · · · · , • ,

in a state of the second s

1--+ 11 1 - 1 - 1

.

A second s

Introduction

and the first of the second , the second s I and the second and the second se المتحرين أحجر والمراجع والمراجع والمحم and a second

the start and the second start in the the second se

 $\frac{1}{1} + \frac{1}{1} + \frac{1$

Results and discussion

,

 $Y_{1} + \frac{1}{2} + \frac{1}{2$

CLE IN PRESS INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (XXXX) XXX

Fig. 2 – SEM images of (a) MIL-101-Fe crystals, (b) Ppy@MIL-101-Fe-CNTs and (c) NC@Fe₂O₃-CNTs. TEM images of (d) MIL-101-Fe crystals, (e) Ppy@MIL-101-Fe-CNTs and (f) NC@Fe₂O₃-CNTs. (g) High-resolution TEM image, (h) SAED pattern and (i) HAADF-STEM image and its corresponding elemental mappings of NC@Fe₂O₃-CNTs.

÷., 1 . . / · · · · / · · · · · · · . - . ` · · · · · · · Y · · · -- 1 , **`** 1 ۴. 1. **1** ۱.

. . . 11 1 . 1 - 11 ۱. . * , * *, + + 1 ÷., ** 1 , +. j ١.

< + <

11 0 . 1 / са. 1 са са е l e ١ · - 1 ١. / + _/ 1 ١. - - . , -

- . . . -1 1 2 2 2 the standard standard

. .

1/ ı. 1 са . . - 1 са , . н. 1 1 - 1 -1 1.1 1 -۰, 11.1 - +. , j . -- 1 ٠, . -٠ 11 . . ٠ - .

ARTICLE IN PRESS

Fig. 4 – (a) Cyclic voltammograms (CV) in a potential window without faradaic processes of $NC@Fe_2O_3$ -CNTs and (b) the summarized double-layer capacitance (C_{dl}) of different catalysts. (c) Chronoamperometric response of $NC@Fe_2O_3$ -CNTs and Pt/C (20 wt %) catalysts at 0.60 V with a rotation speed of 1600 rpm for 10 h in O_2 -saturated 0.1 M KOH.

en en la companya de la comp

^{............}

Fig. 5 – High-resolution XPS spectra of (a) N 1s regions of NC@Fe₂O₃-CNTs, NC@Fe₂O₃ and NC@CNTs, and (b) Fe 2p regions of NC@Fe₂O₃-CNTs, NC@Fe₂O₃ and Fe₂O₃-CNTs.

Scheme 2 – The proposed catalytic mechanism of NC@Fe $_2O_3$ catalyst for electrochemical O_2 reduction to H_2O_2 in alkaline medium.

Conclusions

Acknowledgements

, ***** . . · 1. /, 1 . -...... 11. 1, 7. 1.11/_ 1 . . /. . . /. 11 ----· +, , 11.1. 4 、 17., 1. - 、 , . . - 1

Appendix A. Supplementary data

and the second s

ار الله محمد المحمد من الرواح والمردي المحمد المرد المحمد والمحمد والمحمد من محمد محمد المحمد المحمد المحمد ال المحمد من المحمد من المحمد من المحمد المحمد المحمد المحمد والمحمد محمد محمد محمد محمد محمد المحمد المحمد والمحم

- $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$ ۴.

- $\frac{1}{1 + \frac{1}{1 + 1$